3.388 \(\int \frac{\cosh ^2(e+f x)}{(a+b \sinh ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=91 \[ \frac{\cosh (e+f x) E\left (\tan ^{-1}\left (\frac{\sqrt{b} \sinh (e+f x)}{\sqrt{a}}\right )|1-\frac{a}{b}\right )}{\sqrt{a} \sqrt{b} f \sqrt{a+b \sinh ^2(e+f x)} \sqrt{\frac{a \cosh ^2(e+f x)}{a+b \sinh ^2(e+f x)}}} \]

[Out]

(Cosh[e + f*x]*EllipticE[ArcTan[(Sqrt[b]*Sinh[e + f*x])/Sqrt[a]], 1 - a/b])/(Sqrt[a]*Sqrt[b]*f*Sqrt[(a*Cosh[e
+ f*x]^2)/(a + b*Sinh[e + f*x]^2)]*Sqrt[a + b*Sinh[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.1012, antiderivative size = 91, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08, Rules used = {3192, 411} \[ \frac{\cosh (e+f x) E\left (\tan ^{-1}\left (\frac{\sqrt{b} \sinh (e+f x)}{\sqrt{a}}\right )|1-\frac{a}{b}\right )}{\sqrt{a} \sqrt{b} f \sqrt{a+b \sinh ^2(e+f x)} \sqrt{\frac{a \cosh ^2(e+f x)}{a+b \sinh ^2(e+f x)}}} \]

Antiderivative was successfully verified.

[In]

Int[Cosh[e + f*x]^2/(a + b*Sinh[e + f*x]^2)^(3/2),x]

[Out]

(Cosh[e + f*x]*EllipticE[ArcTan[(Sqrt[b]*Sinh[e + f*x])/Sqrt[a]], 1 - a/b])/(Sqrt[a]*Sqrt[b]*f*Sqrt[(a*Cosh[e
+ f*x]^2)/(a + b*Sinh[e + f*x]^2)]*Sqrt[a + b*Sinh[e + f*x]^2])

Rule 3192

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2
)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ
[p]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\cosh ^2(e+f x)}{\left (a+b \sinh ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+x^2}}{\left (a+b x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=\frac{\cosh (e+f x) E\left (\tan ^{-1}\left (\frac{\sqrt{b} \sinh (e+f x)}{\sqrt{a}}\right )|1-\frac{a}{b}\right )}{\sqrt{a} \sqrt{b} f \sqrt{\frac{a \cosh ^2(e+f x)}{a+b \sinh ^2(e+f x)}} \sqrt{a+b \sinh ^2(e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.306912, size = 143, normalized size = 1.57 \[ \frac{-i \sqrt{2} a \sqrt{\frac{2 a+b \cosh (2 (e+f x))-b}{a}} \text{EllipticF}\left (i (e+f x),\frac{b}{a}\right )+i \sqrt{2} a \sqrt{\frac{2 a+b \cosh (2 (e+f x))-b}{a}} E\left (i (e+f x)\left |\frac{b}{a}\right .\right )+b \sinh (2 (e+f x))}{a b f \sqrt{4 a+2 b \cosh (2 (e+f x))-2 b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cosh[e + f*x]^2/(a + b*Sinh[e + f*x]^2)^(3/2),x]

[Out]

(I*Sqrt[2]*a*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] - I*Sqrt[2]*a*Sqrt[(2*a - b +
 b*Cosh[2*(e + f*x)])/a]*EllipticF[I*(e + f*x), b/a] + b*Sinh[2*(e + f*x)])/(a*b*f*Sqrt[4*a - 2*b + 2*b*Cosh[2
*(e + f*x)]])

________________________________________________________________________________________

Maple [A]  time = 0.097, size = 181, normalized size = 2. \begin{align*}{\frac{1}{a\cosh \left ( fx+e \right ) f} \left ( \sqrt{-{\frac{b}{a}}}\sinh \left ( fx+e \right ) \left ( \cosh \left ( fx+e \right ) \right ) ^{2}+\sqrt{{\frac{b \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a-b}{a}}}\sqrt{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{\it EllipticF} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) -\sqrt{{\frac{b \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a-b}{a}}}\sqrt{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{\it EllipticE} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) \right ){\frac{1}{\sqrt{-{\frac{b}{a}}}}}{\frac{1}{\sqrt{a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(3/2),x)

[Out]

((-1/a*b)^(1/2)*sinh(f*x+e)*cosh(f*x+e)^2+(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(si
nh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))-(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f
*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2)))/(-1/a*b)^(1/2)/a/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh \left (f x + e\right )^{2}}{{\left (b \sinh \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(cosh(f*x + e)^2/(b*sinh(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sinh \left (f x + e\right )^{2} + a} \cosh \left (f x + e\right )^{2}}{b^{2} \sinh \left (f x + e\right )^{4} + 2 \, a b \sinh \left (f x + e\right )^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sinh(f*x + e)^2 + a)*cosh(f*x + e)^2/(b^2*sinh(f*x + e)^4 + 2*a*b*sinh(f*x + e)^2 + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)**2/(a+b*sinh(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh \left (f x + e\right )^{2}}{{\left (b \sinh \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(cosh(f*x + e)^2/(b*sinh(f*x + e)^2 + a)^(3/2), x)